

PREMIS OWL:

Introduction,

Implementation

Guidelines & Best

Practices

Sam Coppens (IBBT-Ugent-MMLab), Sebastien Peyrard(BnF), Rebecca Guenther (LOC),

Kevin Ford (LOC), Tom Creighton (FamilySearch)

September 27
th

, 2011

PREMIS OWL: INTRO & BEST PRACTICES

In this document we discuss PREMIS OWL, the new semantic binding of the PREMIS 2.1 Data Dictionary.

INTRODUCTION TO PREMIS 2.1

PREMIS is a preservation standard based on the OAIS reference model, which is in fact provenance metadata

supplemented with technical metadata and rights metadata to support preservation actions. This standard is

currently in version 2.1, as the PREMIS Data Dictionary for Preservation Metadata. An XML schema is provided

that implements the data dictionary for digital preservation. This preservation standard is described by a data

model, which consists of five semantic units or classes important for digital preservation purposes:

• Intellectual Entities: a part of the content that can be considered as an intellectual unit for the

management and the description of the content. This can be for example a book, a photo, or a

database.

• Object: a discrete unit of information in digital form, typically multimedia objects related to the

intellectual entity.

• Event: An action that has an impact on an object or an agent.

• Agent: a person, institution, or software application that is related to an event of an object or is

associated to the rights of an object.

• Rights: description of one or more rights, permissions of an object or an agent.

A new version is under development which will change the data model to make intellectual entities another

level of object, rather than a separate entity. Events, and rights are directly related to an object, whereas an

agent can only be related to an object through an event or through rights, as can be seen on Figure 1. This way,

not only the changes to an object are stored, but the event involved in this change is also described. These

relationships offer the necessary tools to properly store the provenance of an archived object. The rights

metadata needed for preservation are covered by the rights entity. Binary metadata, technical metadata, fixity

metadata and structural metadata are encapsulated in the PREMIS data dictionary via the description of the

object entity.

Figure 1: Data Model of PREMIS (version 2.1)

WHY PREMIS OWL?

Looking at the data model, one can notice it is dynamically relating the five entities to each other. Until now an

XML schema was available that implemented the PREMIS 2.1 data dictionary. The PREMIS XML Schema is great

for creating, validating and storing preservation metadata for a particular representation, whereas the same

information in RDF can be more easily interlinked, especially between assets coming from different

repositories. It also allows one to go beyond the Information Package level, by providing a standardized way to

query a whole dataset using the SPARQL language and protocol.

For instance, the XML schema uses the identifiers of the entities to relate those to each other. As a

consequence, the relations between the entities are directed and not bidirectional. Implementing the data

dictionary using the Web Ontology Language (OWL), allows us to relate the entities directly to each other,

without the need of referring to an identifier of the entity. Another advantage of using semantic web

technologies to implement the PREMIS 2.1 data dictionary is that the relations can be made bidirectional using

inverse properties.

For all these reasons, the OWL design of PREMIS should not be considered as a replacement for the XML

Schema: the two of them should rather be considered complementary.

DESIGN PERSPECTIVE

For the implementation of the formalised ontology of the PREMIS 2.1 data dictionary, the XML schema of the

data dictionary is used as a starting point. It needs to be stressed that PREMIS is intended to model the types of

information needed for long term preservation, though on top of that, PREMIS can be used to disseminate this

preservation information. When designing the OWL ontology of the PREMIS 2.1 the choice was hence made to

stick as closely as possible to the data dictionary of PREMIS 2.1. The reason for this is that information loss is

unacceptable, when using PREMIS OWL. The data dictionary of PREMIS 2.1 was developed by experts in the

domain of long-term preservation, and every element has its own clearly defined semantics. One cannot just

import other vocabularies into the ontology implementing PREMIS 2.1, because then the clearly defined

semantics of the replaced elements are lost.

PREMIS OWL

In this section the PREMIS OWL ontology is explained, and some design decisions made are discussed. For

describing the PREMIS OWL ontology, we give an overview of every entity defined by PREMIS, which are

modelled as separate classes in OWL, list the deviations from the PREMIS 2.1 Data Dictionary, and give an

overview of the links to other semantic units, because this linking to other semantic units has changed for

every unit. In XML one was forced to link to identifiers of objects, when relating these semantic units. In RDF

and OWL one can use object properties, which will use the URIs of the instances to link directly to them.

GENERAL DEVIATIONS FROM THE PREMIS 2.1 DATA DICTIONARY

In the PREMIS data dictionary, the notions of identifier and extension are globally defined, even if they are

represented by different semantic units in the Data Dictionary. We tried to reflect this in the ontology by

defining generic classes / properties.

IDENTIFIERS

In PREMIS, all identifiers are similar in terms of structure: each Identifier has a value, and a type giving the

domain in which the identifier is unique. They also play the same role: to identify uniquely something, whether

it be an instance of Object, Event, Agent, Rights statement, a license, or a dependency. In PREMIS OWL, we

decided to use a generic premis:identifier property, linking something to its identifier; and a generic Identifier

class, allowing you to declare explicitly your premis:identifierType and Value if you want to. More on this in

Section ‘Implementation Guidelines and Best Practices – Linking to other Vocabularies’

EXTENSIONS

In PREMIS, an Extension is really meant to be outside the scope of PREMIS: it is a container unit with no defined

components. Therefore, there is no need to define a dedicated class for each particular Extension.

Therefore, all particular extension defined in the data dictionary (namely, significantPropertiesExtension,

creatingApplicationExtension, objectCharacteristicsExtension, environmentExtension,

signatureInformationExtension, eventOutcomeDetailExtension, agentExtension, rightsExtension) are modelled

as a single Extension class.

OBJECT

The Object class describes a unit of information in digital form, as shown in Listing 1. It is related to the

Intellectual Entity class. Typically, the intellectual entity consists of the descriptive metadata, and the objects

related to this intellectual entity are the multimedia files representing this content under digital form. For

instance, the intellectual entity can be a theatre performance described using DC, the objects are related to

this theatre performance, which can be a photo of an actor, a video showing a piece of the performance, or a

review published in some newspaper. The descriptive metadata used for describing the intellectual entities are

very domain-specific. For this, there already exist a lot of descriptive metadata models, and in version 2.1 and

earlier it was considered out of scope for PREMIS. Note that a version 3.0 is under development that will make

intellectual entities another level of object and thus not a separate class. When the new version is released, the

OWL ontology will also be revised to make Intellectual Entity a subclass of Object.

An Object class knows three disjoint subclasses:

• File: a file is an ordered sequence of bytes that is known to the system.

• Bitstream: Contiguous or non-contiguous data within a file that has meaningful properties for

preservation purposes

• Representation: a representation is a set of files with structural metadata needed for a complete

manifestation of an intellectual entity.

The Object class possesses all the necessary features to describe the object on the different levels. This

description on the different levels is a recommendation of the OAIS reference model. Both the File and

Bitstream subclasses must have at least a predicate objectCharacteristics, linking to the ObjectCharacteristics

instance, which gives the necessary technical and binary metadata. The Bitstream subclass is also a subclass of

ore:AggregatedResource, because a file can be described as an aggregation of Bitstream instances. The File

subclass is a subclass of ore:AggregatedResource and ore:Aggregation. The reason for this is that a file can be

an aggregation of bitstream, but it can also be part of a representation, which aggregates some files. The

Representation subclass is also a subclass of ore:Aggregation, as it consists of different File instances.

An object can be described further into detail using: preservationLevel, as some repositories offer the

opportunity to define a preservation level for an object; significantProperties, defining some significant

properties of the object, which need to be preserved when, e.g., migrating the data; originalName, for

indicating the original names of the packages delivered to the repository; environment, which describes the

environment the user needs to render the content and interact with the content; and signatureInformation, for

storing digital signatures generated during ingest.

DEVIATIONS FROM THE PREMIS 2.1 DATA DICTIONARY

The PREMIS 2.1 Data Dictionary defined for every object a mandatory objectCategory, denoting the category of

the object: bitstream, file or representation. In the PREMIS XML schema this is implemented as an xsi:type

instead of as an explicit data value. This is left out of the PREMIS OWL ontology, because this information is

captured implicitly by subclasses of the Object class: Bitstream, File, and Representation.

The predicate preservationLevelRole is linked to a SKOS vocabulary, published by the Library of Congress at

http://id.loc.gov/vocabulary/preservationLevelRole. The property for denoting the used message digest

algorithm, i.e., messageDigestAlgorithm under fixity and signatureMethod, in describing digital signatures are

also linked to a SKOS vocabulary of the LOC, published at

http://id.loc.gov/vocabulary/cryptographicHashFunctions.

LINKS TO OTHER SEMANTIC UNITS

For linking objects to other objects, events, intellectual entities, and rights statements, The PREMIS 2.1 Data

Dictionary defined relationship, for relating two objects, linkingEventIdentifier, for linking an object to an event,

linkingIntellectualEntityIdentifier, for relating an object to an IntellectualEntity, and

linkingRightsStatementIdentifier, for linking an object to a RightsStatement.

The relationship element relates two or more objects to each other. These relationships can be structural or

derivational. For denoting the relationship type and subtype, the Library of Congress will publish a SKOS

vocabulary based on the suggested values of the Data Dictionary at http://id.loc.gov/. This vocabulary will

publish the SKOS Concepts also as subproperties of the relationship property. Another option is to define your

own SKOS vocabulary. More on this in Section ‘Implementation Guidelines and Best Practices – Linking to other

Vocabularies’.

The linkingEventIdentifier property, linkingIntellectualEntityIdentifier property, and

linkingRightsStatementIdenfitier, property are replaced resp. by the linkingEvent object property,

linkingIntellectualEntity object property, and the linkingRightsStatement object property.

EXAMPLE

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl# .

@prefix premis: <http://multimedialab.elis.ugent.be/users/samcoppe/ontologies/Premis/premis.owl#>.

<object1> a premis:File;

 premis:preservationLevel <object1PreservationLevel>;

 premis:significantProperties <object1SignificantProperties>;

 premis:objectCharacteristics <object1ObjectCharacteristics>;

 premis:originalName "0001h.tif";

 premis:storage <object1Storage>;

 premis:environment <object1Environment>;

 premis:linkingEvent <event2>;

 premis:linkingRightsStatement <rightsstatement1>;

 premis:linkingIntellectualEntity <dublinCoreDescription1>.

<object1PreservationLevel> a premis:PreservationLevel;

 premis:preservationLevelValue "full";

 premis:preservationLevelRole <http://id.loc.gov/vocabulary/preservationLevelRole/requirement>;

 premis:preservationLevelDateAssigned "2010-07-29T14:41:28".

<object1SignificantProperties> a premis:SignificantProperties;

 premis:significantPropertiesType "behavior";

 premis:significantPropertiesValue "hyperlinks traversable".

<object1ObjectCharacteristics> a premis:ObjectCharacteristics;

 premis:compositionLevel "0";

 premis:fixity <object1Fixity>;

 premis:size "20800896";

 premis:format <object1Format>;

 premis:creatingApplication <object1CreatingApplication1>;

 premis:objectCharacteristicsExtension <object1CharacteristicsExtension>.

<object1Fixity> a premis:Fixity;

 premis:messageDigestAlgorithm <http://id.loc.gov/vocabulary/cryptographicHashFunctions/md5>;

 premis:messageDigest "36b03197ad066cd719906c55eb68ab8d";

 premis:messageDigestOriginator "LocalDCMS".

<object1Format> a premis:Format;

 premis:formatDesignation <object1FormatDesignation>;

 premis:formatRegistry <object1FormatRegistry>.

<object1FormatDesignation> a premis:FormatDesignation;

 premis:formatName "image/tiff";

 premis:formatVersion "6.0".

<object1FormatRegistry> a premis:FormatRegistry;

 premis:formatRegistryName "PRONOM";

 premis:formatRegistryKey <http://reference.data.gov.uk/id/file-format/10>;

 premis:formatRegistryRole "specification".

<object1CreatingApplication1> a premis:CreatingApplication;

 premis:creatingApplicationName "Adobe Photoshop";

 premis:creatingApplicationVersion "CS2";

 premis:dateCreatedByApplication "2006-09-20T08:29:02".

<object1Storage> a premis:Storage;

 premis:contentLocation <object1ContentLocation>;

 premis:storageMedium "disk".

<object1ContentLocation> a premis:ContentLocation;

 premis:contentLocationType "filepath";

 premis:contentLocationValue "amserver".

<object1Environment> a premis:Environment;

 premis:environmentCharacteristic "recommended";

 premis:environmentPurpose "render";

 premis:environmentPurpose "edit";

 premis:software <object1Software1>;

 premis:hardware <object1Hardware1>.

<object1Software1> a premis:Software;

 premis:swName "Adobe Acrobat";

 premis:swVersion "5.0";

 premis:swType "renderer".

<object1Hardware1> a premis:Hardware;

 premis:hwName "Intel x86";

 premis:hwType "processor";

 premis:hwOtherInformation "60 mhz minimum".

Listing 1: Example of a PREMIS OWL Object instance in N3 notation

EVENT

An event aggregates all the information about an action that involves one or more objects. Actions that modify

objects should always be recorded as events.

The Event class is described at least by an eventType, e.g. capture, creation, or migration, and an

eventDateTime. This information can be extended using the eventDetail property, which gives a more detailed

description of the event, and the eventOutcomeInformation, which describes the outcome of the event, in

terms of success, failure, or partial success. These properties are able to describe any event altering an object.

DEVIATIONS FROM THE PREMIS 2.1 DATA DICTIONARY

A difference to the data dictionary involves the eventIdentifier, which was obligatory. This is replaced by an

optional Identifier class. More details on identifiers are given in Section ‘Implementation Guidelines and Best

Practices – Identifiers’.

The eventType property is linked to a SKOS vocabulary, denoting the types of an event, published by the

Library of Congress. The SKOS vocabulary is published at http://id.loc.gov/vocabulary/preservationEvents.

LINKS TO OTHER SEMANTIC UNITS

The Event class can be related to an Agent class or Object class via the resp. properties linkingAgent and

linkingObject. For denoting the agent role in the event, the Library of Congress publishes a SKOS vocabulary,

where the SKOS Concepts are made subproperties of linkingAgent. The SKOS vocabulary will be published at

http://id.loc.gov/. Of course, you could also define your own SKOS vocabulary. More on this in Section

‘Implementation Guidelines and Best Practices – Linking to other Vocabularies’.

EXAMPLE

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix premis: <http://multimedialab.elis.ugent.be/users/samcoppe/ontologies/Premis/premis.owl#>.

<event1> a premis:Event;

 premis:identifier <event1ID>;

 premis:eventType <http://id.loc.gov/vocabulary/preservationEvents/migration>;

 premis:eventDateTime "2010-08-06T00:00:00.002";

 premis:eventDetail "ImageMagick";

 premis:eventOutcomeInformation <event1OutcomInformation>;

 premis:linkingIssuer <agent1>;

 premis:linkingObject <object1>;

 premis:linkingObject <object2>.

<event1ID> a premis:Identifier;

 premis:identifierType "LocalDCMS";

 premis:identifierValue "E002.1".

<event1OutcomeInformation> a premis:EventOutcomeInformation;

 premis:eventOutcome "successful".

Listing 2: Example of a PREMIS OWL Event instance in N3 notation

AGENT

This class aggregates information about attributes or characteristics of agents. Agents can be persons,

organisations or software. This class provides the necessary tools to identify unambiguously an agent. The

minimum properties needed to describe the Agent class are agentIdentfier and agentType. Optionally, an agent

can also be described using the agentName.

LINKS TO OTHER SEMANTIC UNITS

An agent can hold or grant one or more rights. It may carry out, authorise, or compel one or more events. An

agent can only create or alter an object through an event or with respect to a rights statement. The

relationships between an agent and an object through an event or rights entity make it possible to describe the

whole provenance of an object. An agent can be linked to an event or rights statement using the linkingEvent

and linkingRightsStatement properties. Listing 3 gives an example of such an Agent instance.

EXAMPLE

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix premis: <http://multimedialab.elis.ugent.be/users/samcoppe/ontologies/Premis/premis.owl#>.

<agent1> a premis:Agent;

 premis:identifier <agent1ID>;

 premis:agentType "person";

 premis:agentName "name";

 premis:linkingEvent <event1>;

 premis:linkingObject <object1>;

 premis:linkingObject <object2>.

<agent1ID> a premis:Identifier;

 premis:identifierType "OpenID";

 premis:identifierValue "http://some.openID.url

Listing 3: Example of a PREMIS OWL Agent instance in N3 notation

RIGHTS

The minimum core rights information that a preservation repository must contain, is what rights or permissions

the repository has regarding the objects within the repository. These may be granted by copyright law, by

statute, or by a license agreement with the rights holders. Rights entities can be related to one or more objects

and one or more agents.

Every Rights instance can be related to different RightsStatements. A RightsStatement knows three subclasses:

the Copyright subclass, the License subclass, and the Statute subclass. These three subclasses offer the

necessary metadata for describing, rights information, i.e., copyrights, licenses, and statutes. Every

RightsStatement is described at least by a rightsStatementIdentifier, and has also the optional property

rightsGranted, which describes the actions the granting agency has allowed the repository.

DEVIATIONS FROM THE PREMIS 2.1 DATA DICTIONARY

The PREMIS 2.1 Data Dictionary defined for every RightsStatement a mandatory rightsBasis. This is left out of

the PREMIS OWL ontology, because this information is captured implicitly by subclasses of the RightsStatement

class: the Copyright subclass, the License subclass, and the Statute subclass.

LINKS TO OTHER SEMANTIC UNITS

The RightsStatement class can be related to an Object class or Agent class via the optional, repeatable object

properties: linkingObject and linkingAgent. Listing 4 gives an example of such a rights instance.

EXAMPLE

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix premis: <http://multimedialab.elis.ugent.be/users/samcoppe/ontologies/Premis/premis.owl#>.

<rights1> a premis:License;

 premis:identifier <http://some.base.uri/rights/resource/dissemination>;

 premis:licenseInformation <licenseInformation1>;

 premis:rightsGranted <rightsGranted1>;

 premis:linkingObject <object1>;

 premis:linkingObject <object2>;

 premis:linkingContact <agent1>.

<licenseInformation1> a premis:LicenseInformation;

 premis:identifier <http://some.base.uri/license/resource/dissemination>;

premis:licenseTerms "Here comes the actual text of the license.";

 premis:licenseNote "These objects may be disseminated.".

<rightsGranted1> a premis:LicenseInformation;

 premis:act <license1identifier>;

 premis:termOfGrant <license1termofgrant>.

<license1termofgrant> a premis:TermOfGrant;

 premis:startDate "2009-09-01T08:30:00".

Listing 4: Example of a PREMIS OWL Rights instance in N3 notation

LINKS TO OTHER VOCABULARIES

Note: the considerations in the end of the document give you hints on the how you could implement the

ontology. Some modelling options remain open to discussion during the review period. See

http://premisontologypublic.pbworks.com/w/page/45987628/Questions%20for%20reviewers for a dedicated

page on which you can leave your comments.

ORE:AGGREGATION AND ORE:AGGREGATEDRESOURCE

 The PREMIS OWL Bitstream class is a subclass of ore:AggregatedResource, the File class is a subclass of both

the ore:Aggregation class and the ore:AggregatedResource class. Finally, the PREMIS OWL Representation class

is subclassed to the ore:Aggregation class. By declaring this, we allow the use of ore:aggregates or

ore:isAggregatedBy properties to express structural relationships between objects.

DCTERMS:AGENT AND FOAF:AGENT

 The PREMIS OWL Agent class is subclassed to foaf:Agent and dcterms:Agent.

RDFS:LABEL

Some of the datatype properties in PREMIS OWL (typically *Name and *Value properties) could be replaced by

rdfs:label. This way, the preservation information can be queried using the rdfs:label property, whenever there

is a *Name or *Value in the RDF dataset. This would make the model more concise – one single rdfs:label

property whenever you have a *Name or *Value property – but would make the OWL ontology very different

from the original Data Dictionary on the other hand.

IMPLEMENTATION GUIDELINES AND BEST PRACTICES

IDENTIFIERS

HOW DO I DECLARE MY IDENTIFIER TYPES AND VALUES IN RDF?

You can describe extra identifiers for every PREMIS Entity using the identifierType and identifierValue

properties. This information is optional, and is only relevant when the extra identifiers aren’t URIs. Otherwise

that would be redundant, since every instance of Object, Event, Rights or Agent in RDF will already have its own

URI as the subject of any declaration. So, if the archive has globally unique URIs, these will be used for

identifying the instances and no extra information will be needed about them.

To know how to handle your identifiers, you should check if your identifierType belongs to a registered URI

scheme or not. The list of valid URIs are given by the IANA: see http://www.iana.org/assignments/uri-

schemes.html. In particular:

– All URLs beginning with "http:" are indeed URIs, so they need not be re-expressed using the

premis:identifier property. Therefore PURLs and any other HTTP-based identifiers are valid URIs.

– URNs and INFO:URIs are also registered URIs.

– Identifiers beginning with "ark:" and "doi:" are not valid URIs

If your identifiers are not URIs, you can choose to convert your identifiers into valid URIs. In the latter case, the

use of HTTP URIs is recommended when another URI scheme (like INFO:URIs) has not already been used to

solve the problem. For example:

– The ARK identifiers are not valid URI schemes (at least not the mandatory part beginning with "ark:"),

but using an HTTP basis for the identifier can easily convert them into a URI. According to this,

"ark:/12148/bpt6k70861t" identifying a digital premis:representation can easily be converted into a

URI by adding the host resolver to it, like <http://ark.bnf.fr/ark:/12148/bpt6k70861t>.

– For DOIs, a HTTP-version has been designed, see

http://www.crossref.org/CrossTech/2011/04/content_negotiation_for_crossr.html. Using it instead of

the “doi:” identifier converts it to a URI.

If you want to keep your identifiers as character strings, you have 2 options, described below.

IDENTIFIERS IN PREMIS OWL: ALTERNATIVE DESIGNS

The first option is closer to the PREMIS data dictionary but is more verbose:

<event1> premis:identifier <event1-ID>.

<event1-ID> a premis:Identifier;

premis:identifierType "LocalDCMS";

 premis:identifierValue "E002.1".

The following mechanism instead is more concise and therefore more convenient, but means that you have to

define your own properties in a local controlled vocabulary so that you can use them in your assertions:

<event1> someImplementor:localDCMSIdentifier "E002.1".

In the latter case you should declare the following in its own controlled vocabulary that

someImplementor:localDCMSIdentifier rdfs:subPropertyOf premis:identifier.

LINKING TO OTHER VOCABULARIES

As you probably have noticed, the PREMIS OWL ontology relies heavily on some SKOS vocabularies. The Library

of Congress will publish several controlled vocabularies at http://id.loc.gov/. At this moment, the following

vocabularies are published and used in the ontology:

preservationLevelRole: http://id.loc.gov/vocabulary/preservationLevelRole

messageDigestAlgorithm: http://id.loc.gov/vocabulary/cryptographicHashFunctions

eventType: http://id.loc.gov/vocabulary/preservationEvents

In the PREMIS OWL ontology many other properties are also linked to SKOS vocabularies, which will soon be

published by the Library of Congress. These vocabularies will be based on the suggested values of the PREMIS

2.1 Data Dictionary. Of course you are still able to include your own vocabularies. For interoperability reasons,

these vocabularies should be linked to the LOC vocabularies, as explained in the section below. The LOC

vocabularies are also open for suggestions of new terms.

The properties of the PREMIS OWL ontology needing a vocabulary are:

relationship: This property links two objects to each other. The relationship can be derivational or

structural. The vocabulary will refine the relationship property with subproperties,

specifying the relationship type and subtype, e.g. isSourceOf, isPartOf, etc.

linkingAgent: This property will link events and right statements to agents. The vocabulary will

publish subproperties of the linkingAgent, denoting the role of the agent in relation

to the event or rights statement, e.g., linkingCreator, linkingGrantor, etc.

linkingObject: This property will link events and rights statements to objects. The role of the object

can be captured by the subproperties of this linkingObject property, e.g.

linkingSourceObject, linkingOutcomeObject, etc.

I HAVE MY OWN CONTROLLED VOCABULARY FOR PREMIS VALUES. WHAT SHOULD I DO?

1. If the corresponding vocabulary exists in id.loc.gov, check if one existing term does not match the semantics

of your own value.

2. If you think these values are relevant for other implementors to use, you can make a request to id.loc.gov to

update the vocabulary (contact URL: http://id.loc.gov/authorities/contact.html)

3. If these values are not relevant, you need to define your own vocabulary locally, and link it to the existing

controlled vocabularies / PREMIS ontology as much as possible by using rdfs:subClassOf and rdfs:subPropertyOf

mechanisms.

Two examples:

If you use an implementation-specific identifierType, you will have to declare each of your identifier type as a

property, which itself is a rdfs:subPropertyOf the premis:identifier property. This way, an explicit link is made

between your local vocabulary and the PREMIS ontology.

If you use a repository-specific Event, you may need to declare your own someImplementor:SpecificEvent class,

and declare it as a rdfs:subclassOf premis:Event.

LINKING FORMATS AND SOFTWARE TO THE UDFR AND PRONOM REGISTRIES

With the UDFR and PRONOM every format will get a unique URI. In terms of semantics, this is dealt with in the

FormatRegistry semantic container, the format URI being specifically referenced under formatRegistryKey.

We can either re-express all the Data Dictionary hierarchy, or directly declare the instances of pronom:file-

format as possible ranges for premis:format:

<object1ObjectCharacteristics1> premis:format <object1Format1>.

<object1Format1> a premis:Format;

 premis:formatRegistry <object1FormatRegistry1>.

<object1FormatRegistry1> a premis:FormatRegistry;

 premis:formatRegistryName "PRONOM";

 premis:formatRegistryKey <http://reference.data.gov.uk/id/file-format/10>;

 premis:formatRegistryRole "specification".

or

<object1ObjectCharacteristics1> premis:format <http://reference.data.gov.uk/id/file-format/10>.

In the latter case, one is not able to express the formatRegistryRole.

